- 162 Actual Exam Questions
- Compatible with all Devices
- Printable Format
- No Download Limits
- 90 Days Free Updates
Get All SnowPro Advanced: Architect Certification Exam Questions with Validated Answers
| Vendor: | Snowflake |
|---|---|
| Exam Code: | ARA-C01 |
| Exam Name: | SnowPro Advanced: Architect Certification Exam |
| Exam Questions: | 162 |
| Last Updated: | January 10, 2026 |
| Related Certifications: | SnowPro Certification |
| Exam Tags: |
Looking for a hassle-free way to pass the Snowflake SnowPro Advanced: Architect Certification Exam? DumpsProvider provides the most reliable Dumps Questions and Answers, designed by Snowflake certified experts to help you succeed in record time. Available in both PDF and Online Practice Test formats, our study materials cover every major exam topic, making it possible for you to pass potentially within just one day!
DumpsProvider is a leading provider of high-quality exam dumps, trusted by professionals worldwide. Our Snowflake ARA-C01 exam questions give you the knowledge and confidence needed to succeed on the first attempt.
Train with our Snowflake ARA-C01 exam practice tests, which simulate the actual exam environment. This real-test experience helps you get familiar with the format and timing of the exam, ensuring you're 100% prepared for exam day.
Your success is our commitment! That's why DumpsProvider offers a 100% money-back guarantee. If you don’t pass the Snowflake ARA-C01 exam, we’ll refund your payment within 24 hours no questions asked.
Don’t waste time with unreliable exam prep resources. Get started with DumpsProvider’s Snowflake ARA-C01 exam dumps today and achieve your certification effortlessly!
How does a standard virtual warehouse policy work in Snowflake?
A standard virtual warehouse policy is one of the two scaling policies available for multi-cluster warehouses in Snowflake. The other policy is economic. A standard policy aims to prevent or minimize queuing by starting additional clusters as soon as the current cluster is fully loaded, regardless of the number of queries in the queue. This policy can improve query performance and concurrency, but it may also consume more credits than an economic policy, which tries to conserve credits by keeping the running clusters fully loaded before starting additional clusters. The scaling policy can be set when creating or modifying a warehouse, and it can be changed at any time.
Snowflake Documentation: Multi-cluster Warehouses
Snowflake Documentation: Scaling Policy for Multi-cluster Warehouses
The data share exists between a data provider account and a data consumer account. Five tables from the provider account are being shared with the consumer account. The consumer role has been granted the imported privileges privilege.
What will happen to the consumer account if a new table (table_6) is added to the provider schema?
When a new table (table_6) is added to a schema in the provider's account that is part of a data share, the consumer will not automatically see the new table. The consumer will only be able to access the new table once the appropriate privileges are granted by the provider. The correct process, as outlined in option D, involves using the provider's ACCOUNTADMIN role to grant USAGE privileges on the database and schema, followed by SELECT privileges on the new table, specifically to the share that includes the consumer's database. This ensures that the consumer account can access the new table under the established data sharing setup. Reference:
Snowflake Documentation on Managing Access Control
Snowflake Documentation on Data Sharing
A Developer is having a performance issue with a Snowflake query. The query receives up to 10 different values for one parameter and then performs an aggregation over the majority of a fact table. It then
joins against a smaller dimension table. This parameter value is selected by the different query users when they execute it during business hours. Both the fact and dimension tables are loaded with new data in an overnight import process.
On a Small or Medium-sized virtual warehouse, the query performs slowly. Performance is acceptable on a size Large or bigger warehouse. However, there is no budget to increase costs. The Developer
needs a recommendation that does not increase compute costs to run this query.
What should the Architect recommend?
Enabling the search optimization service on the table can improve the performance of queries that have selective filtering criteria, which seems to be the case here. This service optimizes the execution of queries by creating a persistent data structure called a search access path, which allows some micro-partitions to be skipped during the scanning process. This can significantly speed up query performance without increasing compute costs1.
Reference
* Snowflake Documentation on Search Optimization Service1.
What are some of the characteristics of result set caches? (Choose three.)
In Snowflake, the characteristics of result set caches include persistence of data results for 24 hours (B), each use of persisted results resets the 24-hour retention period (C), and result set caches are not shared between different warehouses (F). The result set cache is specifically designed to avoid repeated execution of the same query within this timeframe, reducing computational overhead and speeding up query responses. These caches do not contribute to storage costs, and their retention period cannot be extended beyond the default duration nor up to 31 days, as might be misconstrued. Reference: Snowflake Documentation on Result Set Caching.
A company has built a data pipeline using Snowpipe to ingest files from an Amazon S3 bucket. Snowpipe is configured to load data into staging database tables. Then a task runs to load the data from the staging database tables into the reporting database tables.
The company is satisfied with the availability of the data in the reporting database tables, but the reporting tables are not pruning effectively. Currently, a size 4X-Large virtual warehouse is being used to query all of the tables in the reporting database.
What step can be taken to improve the pruning of the reporting tables?
Effective pruning in Snowflake relies on the organization of data within micro-partitions. By using an ORDER BY clause with clustering keys when loading data into the reporting tables, Snowflake can better organize the data within micro-partitions. This organization allows Snowflake to skip over irrelevant micro-partitions during a query, thus improving query performance and reducing the amount of data scanned12.
Reference =
* Snowflake Documentation on micro-partitions and data clustering2
* Community article on recognizing unsatisfactory pruning and improving it1
Security & Privacy
Satisfied Customers
Committed Service
Money Back Guranteed