- 60 Actual Exam Questions
- Compatible with all Devices
- Printable Format
- No Download Limits
- 90 Days Free Updates
Get All Oracle Database AI Vector Search Professional Exam Questions with Validated Answers
Vendor: | Oracle |
---|---|
Exam Code: | 1Z0-184-25 |
Exam Name: | Oracle Database AI Vector Search Professional |
Exam Questions: | 60 |
Last Updated: | October 5, 2025 |
Related Certifications: | Oracle Database |
Exam Tags: | Professional Level Oracle Data Engineers and AI Database Specialists |
Looking for a hassle-free way to pass the Oracle Database AI Vector Search Professional exam? DumpsProvider provides the most reliable Dumps Questions and Answers, designed by Oracle certified experts to help you succeed in record time. Available in both PDF and Online Practice Test formats, our study materials cover every major exam topic, making it possible for you to pass potentially within just one day!
DumpsProvider is a leading provider of high-quality exam dumps, trusted by professionals worldwide. Our Oracle 1Z0-184-25 exam questions give you the knowledge and confidence needed to succeed on the first attempt.
Train with our Oracle 1Z0-184-25 exam practice tests, which simulate the actual exam environment. This real-test experience helps you get familiar with the format and timing of the exam, ensuring you're 100% prepared for exam day.
Your success is our commitment! That's why DumpsProvider offers a 100% money-back guarantee. If you don’t pass the Oracle 1Z0-184-25 exam, we’ll refund your payment within 24 hours no questions asked.
Don’t waste time with unreliable exam prep resources. Get started with DumpsProvider’s Oracle 1Z0-184-25 exam dumps today and achieve your certification effortlessly!
What is the primary difference between the HNSW and IVF vector indexes in Oracle Database 23ai?
Which SQL statement correctly adds a VECTOR column named "v" with 4 dimensions and FLOAT32 format to an existing table named "my_table"?
To add a new column to an existing table, Oracle uses the ALTER TABLE statement with the ADD clause. Option B, ALTER TABLE my_table ADD (v VECTOR(4, FLOAT32)), correctly specifies the column name 'v', the VECTOR type, and its attributes (4 dimensions, FLOAT32 precision) within parentheses, aligning with Oracle's DDL syntax for VECTOR columns. Option A uses MODIFY, which alters existing columns, not adds new ones, making it incorrect here. Option C uses UPDATE, a DML statement for updating data, not a DDL operation for schema changes. Option D omits parentheses around the VECTOR specification, which is syntactically invalid as Oracle requires dimensions and format to be enclosed. The SQL Language Reference confirms this syntax for adding VECTOR columns.
A machine learning team is using IVF indexes in Oracle Database 23ai to find similar images in a large dataset. During testing, they observe that the search results are often incomplete, missing relevant images. They suspect the issue lies in the number of partitions probed. How should they improve the search accuracy?
IVF (Inverted File) indexes in Oracle 23ai partition vectors into clusters, probing a subset during queries for efficiency. Incomplete results suggest insufficient partitions are probed, reducing recall. The TARGET_ACCURACY clause (A) allows users to specify a desired accuracy percentage (e.g., 90%), dynamically increasing the number of probed partitions to meet this target, thus improving accuracy at the cost of latency. Switching to HNSW (B) offers higher accuracy but requires re-indexing and may not be necessary if IVF tuning suffices. Increasing VECTOR_MEMORY_SIZE (C) allocates more memory for vector operations but doesn't directly affect probe count. EFCONSTRUCTION (D) is an HNSW parameter, irrelevant to IVF. Oracle's IVF documentation highlights TARGET_ACCURACY as the recommended tuning mechanism.
Which statement best describes the core functionality and benefit of Retrieval Augmented Generation (RAG) in Oracle Database 23ai?
RAG in Oracle Database 23ai combines vector search with LLMs to enhance responses by retrieving relevant private data from the database (e.g., via VECTOR columns) and augmenting LLM prompts. This (A) improves context-awareness and precision, leveraging enterprise-specific data without retraining LLMs. Optimizing LLM performance (B) is a secondary benefit, not the core focus. Training specialized LLMs (C) is not RAG's purpose; it uses existing models. Real-time streaming (D) is possible but not the primary benefit, as RAG focuses on stored data retrieval. Oracle's RAG documentation emphasizes private data integration for better LLM outputs.
How is the security interaction between Autonomous Database and OCI Generative AI managed in the context of Select AI?
In Oracle Database 23ai's Select AI, security between the Autonomous Database and OCI Generative AI is managed using Resource Principals (B). This mechanism allows the database instance to authenticate itself to OCI services without hardcoding credentials, enhancing security by avoiding exposure of sensitive keys. TLS/SSL encryption (A) is used for data-in-transit security, but it's a complementary layer, not the primary management method. A VPN tunnel (C) is unnecessary within OCI's secure infrastructure and not specified for Select AI. Manual API key entry (D) is impractical and insecure for automated database interactions. Oracle's documentation on Select AI highlights Resource Principals as the secure, scalable authentication method.
Security & Privacy
Satisfied Customers
Committed Service
Money Back Guranteed