- 17 Actual Exam Questions
- Compatible with all Devices
- Printable Format
- No Download Limits
- 90 Days Free Updates
Get All SOA Design & Architecture Lab with Services & Microservices Exam Questions with Validated Answers
| Vendor: | Arcitura Education |
|---|---|
| Exam Code: | S90.08B |
| Exam Name: | SOA Design & Architecture Lab with Services & Microservices |
| Exam Questions: | 17 |
| Last Updated: | December 19, 2025 |
| Related Certifications: | SOA Certified Professional Gen 2 |
| Exam Tags: |
Looking for a hassle-free way to pass the Arcitura Education SOA Design & Architecture Lab with Services & Microservices exam? DumpsProvider provides the most reliable Dumps Questions and Answers, designed by Arcitura Education certified experts to help you succeed in record time. Available in both PDF and Online Practice Test formats, our study materials cover every major exam topic, making it possible for you to pass potentially within just one day!
DumpsProvider is a leading provider of high-quality exam dumps, trusted by professionals worldwide. Our Arcitura Education S90.08B exam questions give you the knowledge and confidence needed to succeed on the first attempt.
Train with our Arcitura Education S90.08B exam practice tests, which simulate the actual exam environment. This real-test experience helps you get familiar with the format and timing of the exam, ensuring you're 100% prepared for exam day.
Your success is our commitment! That's why DumpsProvider offers a 100% money-back guarantee. If you don’t pass the Arcitura Education S90.08B exam, we’ll refund your payment within 24 hours no questions asked.
Don’t waste time with unreliable exam prep resources. Get started with DumpsProvider’s Arcitura Education S90.08B exam dumps today and achieve your certification effortlessly!
Refer to Exhibit.

Service A is a SOAP-based Web service with a functional context dedicated to invoice-related processing. Service B is a REST-based utility service that provides generic data access to a database.
In this service composition architecture, Service Consumer A sends a SOAP message containing an invoice XML document to Service A (1). Service A then sends the invoice XML document to Service B (2), which then writes the invoice document to a database (3).
The data model used by Service Consumer A to represent the invoice document is based on XML Schema
The recommended solution is to use the Data Model Transformation pattern to transform the invoice XML document from Schema B to Schema A before passing it to Service B. This solution maintains the separation of concerns and allows each service to work with its own specific XML schema. Additionally, the Standardized Service Contract principle should be applied to Service B and Service Consumer A to ensure that unnecessary validation is avoided, thus optimizing the invoice XML document. This solution avoids adding logic that will increase the runtime performance requirements.
Refer to Exhibit.

The Client and Vendor services are agnostic services that are both currently part of multiple service compositions. As a result, these services are sometimes subjected to concurrent access by multiple service consumers.
The Client service primarily provides data access logic to a client database but also coordinates with other services to determine a clients credit rating. The Vendor service provides some data access logic but can also generate various dynamic reports based on specialized business requirements.
After reviewing historical statistics about the runtime activity of the two services, it is discovered that the Client service is serving an ever-increasing number of service consumers. It is regularly timing out, which in turn increases its call rate as service consumers retry their requests. The Vendor service occasionally has difficulty meeting its service-level agreement (SLA) and when this occurs, penalties are assessed.
Recently, the custodian of the Client service was notified that the Client service will be made available to new service consumers external to its service inventory. The Client service will be providing free credit rating scores to any service consumer that connects to the service via the Internet. The Vendor service will remain internal to the service inventory and will not be exposed to external access.
Which of the following statements describes a solution that addresses these issues and requirements?
This solution addresses the specific requirements and issues identified in the scenario. The Official Endpoint pattern can be applied to the Client service to establish a managed endpoint for consumption by service consumers external to the service inventory, which will allow for controlled and managed access to the service. The Concurrent Contracts pattern can be applied to the Vendor service, which will enable it to connect with alternative Client service implementation if the first attempt to connect fails, thereby increasing its availability and reducing the possibility of penalties being assessed due to not meeting its SLA.
Refer to Exhibit.

Service Consumer A sends Service A a message containing a business document (1). The business document is received by Component A, which keeps the business document in memory and forwards a copy to Component B (3). Component B first writes portions of the business document to Database A (4). Component B then writes the entire business document to Database B and uses some of the data values from the business document as query parameters to retrieve new data from Database B (5).
Next, Component B returns the new date* back to Component A (6), which merges it together with the original business document it has been keeping in memory and then writes the combined data to Database C (7). The Service A service capability invoked by Service Consumer A requires a synchronous request-response data exchange. Therefore, based on the outcome of the last database update, Service A returns a message with a success or failure code back to Service Consumer A (8).
Databases A and B are shared, and Database C is dedicated to the Service A service architecture.
There are several problems with this architecture. The business document that Component A is required to keep in memory (while it waits for Component B to complete its processing) can be very large. The amount of runtime resources Service A uses to keep this data in memory can decrease the overall performance of all service instances, especially when it is concurrently invoked by multiple service consumers. Additionally, Service A can take a long time to respond back to Service Consumer A because Database A is a shared database that sometimes takes a long time to respond to Component B. Currently, Service Consumer A will wait for up to 30 seconds for a response, after which it will assume the request to Service A has failed and any subsequent response messages from Service A will be rejected.
What steps can be taken to solve these problems?
The problems with the current architecture can be addressed by applying the following patterns:
Service Statelessness principle and State Repository pattern - This pattern allows Component A to defer the business document data to a state database while it waits for a response from Component B. This helps reduce the amount of runtime resources Service A uses to keep the data in memory and improves overall performance.
Service Autonomy principle and Service Data Replication pattern - This pattern allows Component B to access a dedicated replicated database instead of the shared Database A, which can improve response time.
Asynchronous Queuing pattern - This pattern allows Service A to use a message queue to communicate with Service Consumer A asynchronously. This means that Service Consumer A does not need to remain stateful while waiting for a response from Service A, which can improve overall performance and scalability.
Therefore, option B is the correct answer. Option A is incorrect because it suggests using the Compensating Service Transaction pattern to raise awareness of the eventual response rejection, which does not actually solve the problem. Option C is also incorrect because it suggests using multiple patterns, which may not be necessary and can add unnecessary complexity to the architecture.
Refer to Exhibit.

Service A is an entity service that provides a set of generic and reusable service capabilities. In order to carry out the functionality of any one of its service capabilities, Service A is required to compose Service B (1) and Service C (2), and Service A is required to access Database A (3), Database B (4), and Database C (5). These three databases are shared by other applications within the IT enterprise.
All of service capabilities provided by Service A are synchronous, which means that for each request a service consumer makes, Service A is required to issue a response message after all of the processing has completed.
Service A is one of many entity services that reside In a highly normalized service Inventory. Because Service A provides agnostic logic, it is heavily reused and is currently part of many service compositions.
You are told that Service A has recently become unstable and unreliable. The problem has been traced to two issues with the current service architecture. First, Service B, which Is also an entity service, is being increasingly reused and has itself become unstable and unreliable. When Service B fails, the failure is carried over to Service
This solution addresses both issues with the current service architecture. By applying the Redundant Implementation pattern to Service B, duplicate deployments of the service are made available, ensuring that when one implementation fails, another can be accessed by Service A. Additionally, the Service Data Replication pattern can be applied to establish a dedicated database that contains a copy of the data from shared Database B that is required by Service A. This replicated database is designed with an optimized data model to improve query execution performance, ensuring that queries issued by Service A to the database can complete more quickly, improving the overall stability and reliability of Service A. By applying these patterns, the problems with Service A can be solved without compromising the normalization of the service inventory.
Refer to Exhibit.

Service Consumer A sends a message to Service A (1), which then forwards the message to Service B (2). Service B forwards the message to Service C (3), which finally forwards the message to Service D (4). However, Services A, B and C each contain logic that reads the contents of the message to determine what intermediate processing to perform and which service to forward the message to. As a result, what is shown in the diagram is only one of several possible runtime scenarios.
Currently, this service composition architecture is performing adequately, despite the number of services that can be involved in the transmission of one message. However, you are told that new logic is being added to Service A that will require it to compose one other service to retrieve new data at runtime that Service A will need access to in order to determine where to forward the message to. The involvement of the additional service will make the service composition too large and slow.
What steps can be taken to improve the service composition architecture while still accommodating the new requirements and avoiding an increase in the amount of service composition members?
This solution addresses the issue of the service composition becoming too large and slow by introducing a new Routing service that is invoked by messages read from a messaging queue. This allows Service A and Service C to determine where to forward messages to at runtime without the need for additional services in the composition. The Service Loose Coupling principle is applied to ensure that the new Routing service remains decoupled from other services so that it can perform its routing functions independently from service contract invocation.
Security & Privacy
Satisfied Customers
Committed Service
Money Back Guranteed