- 190 Actual Exam Questions
- Compatible with all Devices
- Printable Format
- No Download Limits
- 90 Days Free Updates
Get All AWS Certified Data Engineer - Associate Exam Questions with Validated Answers
| Vendor: | Amazon |
|---|---|
| Exam Code: | Amazon-DEA-C01 |
| Exam Name: | AWS Certified Data Engineer - Associate |
| Exam Questions: | 190 |
| Last Updated: | January 8, 2026 |
| Related Certifications: | AWS Certified Data Engineer Associate |
| Exam Tags: | Associate-level Amazon Data engineersDatabase Administratorsand Cloud architects |
Looking for a hassle-free way to pass the Amazon AWS Certified Data Engineer - Associate exam? DumpsProvider provides the most reliable Dumps Questions and Answers, designed by Amazon certified experts to help you succeed in record time. Available in both PDF and Online Practice Test formats, our study materials cover every major exam topic, making it possible for you to pass potentially within just one day!
DumpsProvider is a leading provider of high-quality exam dumps, trusted by professionals worldwide. Our Amazon-DEA-C01 exam questions give you the knowledge and confidence needed to succeed on the first attempt.
Train with our Amazon-DEA-C01 exam practice tests, which simulate the actual exam environment. This real-test experience helps you get familiar with the format and timing of the exam, ensuring you're 100% prepared for exam day.
Your success is our commitment! That's why DumpsProvider offers a 100% money-back guarantee. If you don’t pass the Amazon-DEA-C01 exam, we’ll refund your payment within 24 hours no questions asked.
Don’t waste time with unreliable exam prep resources. Get started with DumpsProvider’s Amazon-DEA-C01 exam dumps today and achieve your certification effortlessly!
A data engineer has a one-time task to read data from objects that are in Apache Parquet format in an Amazon S3 bucket. The data engineer needs to query only one column of the data.
Which solution will meet these requirements with the LEAST operational overhead?
Option B is the best solution to meet the requirements with the least operational overhead because S3 Select is a feature that allows you to retrieve only a subset of data from an S3 object by using simple SQL expressions. S3 Select works on objects stored in CSV, JSON, or Parquet format. By using S3 Select, you can avoid the need to download and process the entire S3 object, which reduces the amount of data transferred and the computation time. S3 Select is also easy to use and does not require any additional services or resources.
Option A is not a good solution because it involves writing custom code and configuring an AWS Lambda function to load data from the S3 bucket into a pandas dataframe and query the required column. This option adds complexity and latency to the data retrieval process and requires additional resources and configuration. Moreover, AWS Lambda has limitations on the execution time, memory, and concurrency, which may affect the performance and reliability of the data retrieval process.
Option C is not a good solution because it involves creating and running an AWS Glue DataBrew project to consume the S3 objects and query the required column. AWS Glue DataBrew is a visual data preparation tool that allows you to clean, normalize, and transform data without writing code. However, in this scenario, the data is already in Parquet format, which is a columnar storage format that is optimized for analytics. Therefore, there is no need to use AWS Glue DataBrew to prepare the data. Moreover, AWS Glue DataBrew adds extra time and cost to the data retrieval process and requires additional resources and configuration.
Option D is not a good solution because it involves running an AWS Glue crawler on the S3 objects and using a SQL SELECT statement in Amazon Athena to query the required column. An AWS Glue crawler is a service that can scan data sources and create metadata tables in the AWS Glue Data Catalog. The Data Catalog is a central repository that stores information about the data sources, such as schema, format, and location. Amazon Athena is a serverless interactive query service that allows you to analyze data in S3 using standard SQL. However, in this scenario, the schema and format of the data are already known and fixed, so there is no need to run a crawler to discover them. Moreover, running a crawler and using Amazon Athena adds extra time and cost to the data retrieval process and requires additional services and configuration.
AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide
S3 Select and Glacier Select - Amazon Simple Storage Service
AWS Lambda - FAQs
What Is AWS Glue DataBrew? - AWS Glue DataBrew
Populating the AWS Glue Data Catalog - AWS Glue
What is Amazon Athena? - Amazon Athena
A data engineer needs to build an enterprise data catalog based on the company's Amazon S3 buckets and Amazon RDS databases. The data catalog must include storage format metadata for the data in the catalog.
Which solution will meet these requirements with the LEAST effort?
To build an enterprise data catalog with metadata for storage formats, the easiest and most efficient solution is using an AWS Glue crawler. The Glue crawler can scan Amazon S3 buckets and Amazon RDS databases to automatically create a data catalog that includes metadata such as the schema and storage format (e.g., CSV, Parquet, etc.). By using AWS Glue crawler classifiers, you can configure the crawler to recognize the format of the data and store this information directly in the catalog.
Option B: Use an AWS Glue crawler to build a data catalog. Use AWS Glue crawler classifiers to recognize the format of data and store the format in the catalog. This option meets the requirements with the least effort because Glue crawlers automate the discovery and cataloging of data from multiple sources, including S3 and RDS, while recognizing various file formats via classifiers.
Other options (A, C, D) involve additional manual steps, like having data stewards inspect the data, or using services like Amazon Macie that focus more on sensitive data detection rather than format cataloging.
A retail company has a customer data hub in an Amazon S3 bucket. Employees from many countries use the data hub to support company-wide analytics. A governance team must ensure that the company's data analysts can access data only for customers who are within the same country as the analysts.
Which solution will meet these requirements with the LEAST operational effort?
AWS Lake Formation is a service that allows you to easily set up, secure, and manage data lakes. One of the features of Lake Formation is row-level security, which enables you to control access to specific rows or columns of data based on the identity or role of the user. This feature is useful for scenarios where you need to restrict access to sensitive or regulated data, such as customer data from different countries. By registering the S3 bucket as a data lake location in Lake Formation, you can use the Lake Formation console or APIs to define and apply row-level security policies to the data in the bucket. You can also use Lake Formation blueprints to automate the ingestion and transformation of data from various sources into the data lake. This solution requires the least operational effort compared to the other options, as it does not involve creating or moving data, or managing multiple tables, views, or roles.Reference:
A financial services company stores financial data in Amazon Redshift. A data engineer wants to run real-time queries on the financial data to support a web-based trading application. The data engineer wants to run the queries from within the trading application.
Which solution will meet these requirements with the LEAST operational overhead?
The Amazon Redshift Data API is a built-in feature that allows you to run SQL queries on Amazon Redshift data with web services-based applications, such as AWS Lambda, Amazon SageMaker notebooks, and AWS Cloud9. The Data API does not require a persistent connection to your database, and it provides a secure HTTP endpoint and integration with AWS SDKs. You can use the endpoint to run SQL statements without managing connections. The Data API also supports both Amazon Redshift provisioned clusters and Redshift Serverless workgroups. The Data API is the best solution for running real-time queries on the financial data from within the trading application, as it has the least operational overhead compared to the other options.
Option A is not the best solution, as establishing WebSocket connections to Amazon Redshift would require more configuration and maintenance than using the Data API. WebSocket connections are also not supported by Amazon Redshift clusters or serverless workgroups.
Option C is not the best solution, as setting up JDBC connections to Amazon Redshift would also require more configuration and maintenance than using the Data API. JDBC connections are also not supported by Redshift Serverless workgroups.
Option D is not the best solution, as storing frequently accessed data in Amazon S3 and using Amazon S3 Select to run the queries would introduce additional latency and complexity than using the Data API. Amazon S3 Select is also not optimized for real-time queries, as it scans the entire object before returning the results.Reference:
Using the Amazon Redshift Data API
Amazon Redshift Data API Reference
AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide
A company wants to migrate an application and an on-premises Apache Kafka server to AWS. The application processes incremental updates that an on-premises Oracle database sends to the Kafka server. The company wants to use the replatform migration strategy instead of the refactor strategy.
Which solution will meet these requirements with the LEAST management overhead?
Problem Analysis:
The company needs to migrate both an application and an on-premises Apache Kafka server to AWS.
Incremental updates from an on-premises Oracle database are processed by Kafka.
The solution must follow a replatform migration strategy, prioritizing minimal changes and low management overhead.
Key Considerations:
Replatform Strategy: This approach keeps the application and architecture as close to the original as possible, reducing the need for refactoring.
The solution must provide a managed Kafka service to minimize operational burden.
Low overhead solutions like serverless services are preferred.
Solution Analysis:
Option A: Kinesis Data Streams
Kinesis Data Streams is an AWS-native streaming service but is not a direct substitute for Kafka.
This option would require significant application refactoring, which does not align with the replatform strategy.
Option B: MSK Provisioned Cluster
Managed Kafka service with fully configurable clusters.
Provides the same Kafka APIs but requires cluster management (e.g., scaling, patching), increasing management overhead.
Option C: Amazon Kinesis Data Firehose
Kinesis Data Firehose is designed for data delivery rather than real-time streaming and processing.
Not suitable for Kafka-based applications.
Option D: MSK Serverless
MSK Serverless eliminates the need for cluster management while maintaining compatibility with Kafka APIs.
Automatically scales based on workload, reducing operational overhead.
Ideal for replatform migrations, as it requires minimal changes to the application.
Final Recommendation:
Amazon MSK Serverless is the best solution for migrating the Kafka server and application with minimal changes and the least management overhead.
Security & Privacy
Satisfied Customers
Committed Service
Money Back Guranteed